A compactness theorem for scalar-flat metrics on manifolds with boundary
نویسندگان
چکیده
منابع مشابه
Compactness for Conformal Metrics with Constant Q Curvature on Locally Conformally Flat Manifolds
In this note we study the conformal metrics of constant Q curvature on closed locally conformally flat manifolds. We prove that for a closed locally conformally flat manifold of dimension n ≥ 5 and with Poincarë exponent less than n−4 2 , the set of conformal metrics of positive constant Q and positive scalar curvature is compact in the C∞ topology.
متن کاملOn Rigidly Scalar-Flat Manifolds
Witten and Yau (hep-th/9910245) have recently considered a generalisation of the AdS/CFT correspondence, and have shown that the relevant manifolds have certain physically desirable properties when the scalar curvature of the boundary is positive. It is natural to ask whether similar results hold when the scalar curvature is zero. With this motivation, we study compact scalar flat manifolds whi...
متن کاملGalloway’s compactness theorem on Finsler manifolds
The compactness theorem of Galloway is a stronger version of the Bonnet-Myers theorem allowing the Ricci scalar to take also negative values from a set of real numbers which is bounded below. In this paper we allow any negative value for the Ricci scalar, and adding a condition on its average, we find again that the manifold is compact and provide an upper bound of its diameter. Also, with no c...
متن کاملConformally flat metrics on 4-manifolds
We prove that for each closed smooth spin 4-manifold M there exists a closed smooth 4-manifold N such that M#N admits a conformally flat Riemannian metric.
متن کاملCompactness and Non-compactness for the Yamabe Problem on Manifolds with Boundary
We study the problem of conformal deformation of Riemannian structure to constant scalar curvature with zero mean curvature on the boundary. We prove compactness for the full set of solutions when the boundary is umbilic and the dimension n ≤ 24. The Weyl Vanishing Theorem is also established under these hypotheses, and we provide counter-examples to compactness when n ≥ 25. Lastly, our methods...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Calculus of Variations and Partial Differential Equations
سال: 2010
ISSN: 0944-2669,1432-0835
DOI: 10.1007/s00526-010-0365-8